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4.1  Estimation of errors & uncertainties associated with in-situ data sets of lake 
state & condition for EO validation. 

 
4.2  Full assessment of errors & uncertainties associated with the generated EO 

products as inputs into WPs 5 & 6. 

 
 
 

Objectives 

Construct uncertainty budgets for each of the different data 
sources to incorporate in the EO calibration. 

 

Aim 

WP4- Integrate data and construct uncertainty budgets 



• Led by University of Stirling and contributions from all. 
 

• The consortium met in January 2013 to discuss what was already known 
about the nature and type of errors which can arise for each data source 
within Globolakes.   
 

• A working report from the meeting collates the discussion from the 
meeting, along with terminology to be used by the consortium partners 
for this work. 

WP4- Integrate data and construct uncertainty budgets 
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Statistical modelling for uncertainty assessment 

For a small subset of lakes: 
 
1. What effect will errors in the In-situ data have on the validation of the 

EO products?  What is the scale of the errors?  
 
  
2.  How do we match In-situ data and EO data at different 

spatiotemporal scales? 
  
 Combining information from observed point-referenced monitoring data and EO 

products (hierarchical models, downscaling co-kriging). 
 
 
 
 
 
 

WP4- Integrate data and construct uncertainty budgets 



In standard regression the line of best fit is 
estimated by minimising the sum of the squared 
vertical distances between the observed 
responses and the responses predicted by the 
linear approximation. 

 
Here, the assumption is made that there is no 

measurement error associated with x, and only y 
has been measured with some degree of 
imprecision. 

 
 
 

 
If it is thought that there is measurement error associated with both variables and this 
is not taken into account in some way, the parameters estimated to describe the 
relationship will potentially be biased.  
 
 The results of any hypothesis tests on the regression parameters estimated may 
therefore be invalid. 
 
Errors in variables models take into account variability in both variables. 

Errors in Variables Approaches 



6 Different regression approaches have been considered: 
 

1. Ordinary least squares – standard regression approach, assumes error is only 
present in the remote sensing data. 
 

2. Weighted least squares – as with OLS, however weights are used in an attempt 
to account for non-constant variability in the errors. 
 

3. Deming regression – accounts for error in both variables and can be applied 
where there is a higher level of error in one measurement th an the other. 
 

4. Weighted Deming regression – as Deming regression however weights are 
used in an attempt to account for non-constant variability in the errors. 
 

5. Geometric Mean Regression – accounts for error in both variables, assumes 
same error variance for both measurements. 
 

6. Passing Bablok Regression – non-parametric approach which is robust to 
outliers and makes no distributional assumptions on errors. All other approaches 
assume normally distributed errors.  

 
 

 

Regression Models 



• Orthogonal Regression allows for imprecision 
in both x and y by choosing the line that minimises 
the sum of squared differences from the 
observations to the line that are in a direction at 
right angles to the line.  
 

• Deming regression extends orthogonal 
regression for minimisation of distances at angles 
other than 90 degrees. 
 

• Deming regression incorporates information from 
the ratio of error variability in the in-situ and the 
remote sensing data 
 

• Weighted Deming regression can be applied to 
additionally account for heteroscedasticity in the 
error (variability changes as mean changes) 
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MCI Chl Fitted Regression Lines 



 

MCI Chl Fitted Regression Lines 



• Plot shows confidence 
interval for the slope under 
each regression approach. 
 

• In this case P-B, Weighted 
Deming regression and 
Weighted Linear regression 
all identify that the identity 
relationship is present -  
these are the approaches 
which take into account non 
constant variance. 
 

• The widths of confidence 
intervals are quite different. 
 

 



 
• A simulation study was designed to investigate the ability of each of 

the approaches to detect a y=x relationship, and a linear relationship, 
in the presence of a range of different error structures. 

 
The study considered the effects of : 
 

• Varying numbers of samples. 
 

• Different quantities of error variability. 
 

• Different ratios of error variability (λ denotes the error variance ratio). 
 

• Different degrees of heteroscedasticity in the error terms. 

 
 

 

Simulation Study 



 
• For each simulation scenario the statistical power and size was 

computed: 
 

• Power is the probability of detecting the y=x relationship (or any 
statistically significant linear relationship) when it is present. 
 

• Size is the probability of detecting the y=x relationship (or any 
statistically significant linear relationship) when there is no 
underlying relationship present. Results for this are not presented 
here. 

 
• 500 datasets, each with 100 samples were simulated for each scenario 

and the 6 regression models discussed were fitted to each dataset. 
 

 

 
 

 

Simulation Study 



 
 

1. x with no error, y with N(0,σ²) 
error. 
 

2. x and y with constant error, both 
~ N(0,σ²) . 
 

3. x and y with constant error,  
 x error  ~ N(0,σ²)  
 y error  ~ N(0,2σ²) 
 
4. x and y with heteroscedastic 

error, both equal. 
 

5. x and y with heteroscedastic 
error,  

 y error = 2 * x error 
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           Simulation Scenarios                
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Power Results for scenarios 
2 and 3 

 
• Red line corresponds to 95% 

power. 
 

• Yellow bar is power to detect 
any linear relationship. 
 

• Blue bar is power to detect 
true x=y relationship. 
 

• Results for non-constant 
variance are not shown but 
for λ=1 weighted deming 
regression performs well in 
terms of the level of power 
achieved 
 

2.  σ=4, λ=1 

3.  σ=4, λ=1/2 

Simulation Results: Example 



• When the underlying data have error in both variables the errors in 
variables approaches outperform the standard approaches in terms of 
detecting the true underlying relationship. 
 

• Deming regression and Weighted Deming regression perform well 
when there are different error variance values for each variable (λ≠1). 
 

• Weighted Deming regression performs well when there is non constant 
variance and the error variance ratio is equal to 1  (λ=1). 
 

• When there is both non constant variance and a error variance ratio (λ) 
which is not 1 the methods struggle to detect the underlying pattern. 

 
 

Simulation Results: Summary 



 
 

 

It is unlikely matchups are considered at single 
lake. 

 
We are developing Modified Deming Regression. 

 
• Multiple error variance ratio values can be 

used. 
 

• One error variance ratio for each lake. 
 

• In practice this means regression line is 
obtained by minimising distance lines at 
different angles simultaneously. 
 

• This approach assumes that the variability 
across lake is variable, but within lake is 
constant. 

• Further modifications to the weights 
can be used to account for changes in 
variability within lake, if necessary.  

 
 

Extensions 



• A range of different errors in variables approaches have been considered 
 (others are available). 

 
• While the point estimates of the slope are often similar, there can be large 

discrepancies in the standard errors associated with these estimates.  
 

• Weighted approaches enable us to account for heteroscedasticity and to 
combine information from multiple lakes. 
 

• Further investigation is ongoing to estimate the size of the error ratios in 
real data.  Additional data on both remote sensing values and in-situ 
values will be used in order to quantify and incorporate this information. 
 

• Deming regression and geometric mean regression can both be extended 
beyond method comparison and can be used when there are multiple 
explanatory variables which are all subject to uncertainty. 

 

 
 

 

Summary 



• MSc project exploring spatial variability at Lake Balaton. 
▫ Exploring in-situ data at 5 different sites. 
▫ Exploring ArcLake data, pixel variability. 
 

• PhD project comparing spatiotemporal variability for large lakes. 
▫ Focussed work comparing lake surfaces. 

 
…both in early stages! 

 
 
 

Related Work 
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